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ABSTRACT
Cyber-physical systems comprise digital components that
directly interact with a physical environment. Specifying the
behavior desired of such systems requires analytical model-
ing of physical phenomena. Similarly, testing them requires
simulation of continuous systems. While numerous tools
support later stages of developing simulation codes, there is
still a large gap between analytical modeling and building
running simulators. This gap significantly impedes the abil-
ity of scientists and engineers to develop novel cyber-physical
systems.

We propose bridging this gap by automating the mapping
from analytical models to simulation codes. Focusing on me-
chanical systems as an important class of physical systems,
we study the form of analytical models that arise in this
domain, along with the process by which domain experts
map them to executable codes. We show that the key steps
needed to automate this mapping are 1) a light-weight anal-
ysis to partially direct equations, 2) a binding-time analysis,
and 3) symbolic differentiation. In addition to producing a
prototype modeling environment, we highlight some limita-
tions in the state of the art in tool support of simulation,
and suggest ways in which some of these limitations could
be overcome.

1. INTRODUCTION
Systems where digital components are intimately coupled

with their physical environment — often called cyber-physi-
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cal systems (CPS) – pose a challenge when we wish to specify
their desired behavior. For purely digital computing sys-
tems, the programming language or hardware description
language itself can suffice. Often, the implementation lan-
guage itself can express the desired behavior using asser-
tions. Such assertions can then be used as dynamic checks,
used by test-case generation tools, or used by formal verifi-
cation tools. In contrast, for CPS applications we typically
want to specify the desired behavior for a computational
component in terms of its action on the physical environ-
ment. For example, we may wish that for a particular robot
controller the torque on one of the robot’s joints never ex-
ceed a certain value. However, part of specifying“the robot’s
joint” is to specify “the robot”. Rigorously specifying the
latter, and in particular, its continuous mechanics, is most
naturally and accurately expressed using the mathematical
formalisms of analytical dynamics (c.f. [1]). Specifying a
robot’s dynamics is neither naturally nor accurately speci-
fied in the discrete-step language used to write the controller.

It is tempting, given that simulation of continuous systems
is a well-established discipline [8], to assume that there is
a tool for directly expressing the analytical dynamics of a
physical system, and which can be automatically used to
simulate the system. This does not seem to be the case.
This absence is surprising, given the abundance of tools that
seem relevant to this process, and suggests a need for closer
scrutiny of the process for going from models to simulation
codes.

1.1 The Model/Simulator Gap
As a starting point for exploring the gap between mod-

els and simulation codes, we focus on mechanical systems.
While mechanics is only one feature of a physical environ-
ment, it is expressive enough to capture important contin-
uous aspects of vehicles, robots, linear circuits, molecular
structures, nano structures, and others. At the same time,
even though mechanical systems give rise only to ordinary
differential equations, any challenges that this domain re-
veals will also be present with more sophisticated domains
such as fluid dynamics, which give rise to partial differential
equations.

Without computational tools, mechanical and control en-
gineers transform models of mechanical systems to simula-
tion codes through a series of laborious, manual mathemat-
ical manipulations, which result in mathematical equations



in a “constructive enough form” that they are easy to imple-
ment as a simulation program.

When we consider mechanical tools, we find that there
is a wide range of varieties with different focus and de-
sign philosophies. The sheer diversity of such tools poses
a practical problem for all practitioners working on CPS in-
novations. More fundamentally, there is a number of rea-
sons why most tools available today do not address the
model/simulator gap directly.

One reason is that many widely used tools do not at-
tempt to capture models directly. For example, scripting
or programming languages such as MATLAB [28], R [25], or
Biopython [4] focus on providing a more convenient program-
ming language for a broad class of scientific problems. They
help programmers (or scientists with programming exper-
tise and inclination) develop simulation codes, and are not
really intended to capture models as they are most natu-
rally expressed by domain experts. With such programming
languages, assuming that underlying analytical models as-
sumptions were ever explicitly expressed somewhere in the
code, they typically get buried and mangled with numerous
implementation concerns.

Another reason is that tools often are incapable of captur-
ing analytical models naturally. For example, with the above
tools (and their graphical extensions such as Simulink), even
if the user is careful enough to keep the code aligned with
some underlying analytical model, the nature of these pro-
gramming languages limits them to expressing so-called causal
models, which are models that are not expressed as equa-
tions, but rather, in a more restrictive, directed form.

Tools that focus on high-performance typically require
special expertise to be used effectively, and are generally
designed to be used as a back-end for higher-level tools. Ex-
amples of such tools include solvers such as LINPACK [9]
and PETSc [3].

Tools that facilitate capturing physical design often hide
the underlying analytical models. For example, AutoCAD [2],
Pro/ENGINEER [24], and SolidWorks [27] all provide excel-
lent graphical interfaces for capturing geometric design. In
many cases, such tools also provide a simulation capability,
and lend themselves naturally for helping the user visual the
results of a simulation (at least in the same geometric terms
as entry was done). However, the fact that the underly-
ing analytical models (as well as the treatment of various
modalities that may arise in a simulation) are generally hid-
den, limit the fidelity of their simulations. In this respect,
these tools are not unlike real-time physics simulation en-
gines [5], which are very useful for graphics, animation, and
gaming applications, but do not presume to be faithful to
an explicit analytical model.

Like programming languages, symbolic algebra tools are
often too generic. While symbolic algebra tools such as
Mathematica [31] and Maple [21] can, in principle, assist in
manipulating analytical models and mapping them to code,
in practice, they are not always well suited for this task.
While these systems can provide a powerful tool for assist-
ing in analytical modeling, they often suffer from subtle but
highly significant problems. Guiding such tools to perform
the particular desired transformations can be challenging,
and their effective use can require intimate familiarity with
the tool, its built-in routines and libraries, as well as using
care to avoid divergent rewriting and exponential increase in
the size of the model. Even simple examples of these diffi-

culties can be hard to get unstuck from. A specific example
of such difficulty arose in our work. As the size of the phys-
ical system being modeled increases, symbolic computing
systems can both take exponentially large time to compute
a symbolic result and produce a result that is unnecessar-
ily exponentially large. We encountered such a problem in
the context of modeling a novel bipedal natural gate robot.
Trying to symbolically differentiate an 8 by 8 Lagrangian co-
efficient using one of the leading symbolic solvers, the result
was a file that was 13MB large. The level of redundancy
in the generated term made it impractical as a basis for a
simulation code. More significantly, the underlying combi-
natoric explosion made modeling more sophisticated systems
impossible until this problem was addressed. The problems
could be avoided if symbolic algebra tools incorporate any of
decades worth of improvements on symbolic differentiation
which generally go under the name of automatic differenti-
ation (c.f. [17]).

Thus, even for the simplest physical domains, multiple
tools are needed to go from analytical modeling to simula-
tion. For example, often symbolic computing tools are used
to assist in the analytical modeling of mechanical systems,
and the resulting computations need to be mapped to the
particular platform that will be used for carrying out the
resulting computation. Carrying out such mapping by hand
is error prone. Using an automatic translation would be
preferable, but this requires either finding a translator or
writing one. Often, because of the numerous semantic sub-
tleties between languages and the differences in the libraries
used in each language, attaining an operational and a correct
translation itself becomes a significant investment. Worse,
in many cases, the internal languages for the most success-
ful tools are not readily available. Even when standards
exist for interchange of information, such as is the case for
CAD tools, practical experience shows that correct data in-
terchange between such tools is still difficult. This is not too
surprising, because the semantics of the mediating formats
are typically defined only by the implementations, which
themselves were organically grown without a blueprint for
integration.

1.2 Contributions
To bridge the gap between analytical models and running

simulation codes, we show the feasibility of using a subset of
the mathematics used for analytical modeling as a domain-
specific language (DSL) for building simulation codes. In
doing so we converge on a design similar to a promising class
of modeling tools, namely equation-oriented languages. The
leading example of such languages is Modelica (c.f. [12]).
Although Modelica is a highly-developed, industrial strength
language, the limited expressivity of its core language can be
noticed when we attempt to analytically model even small
mechanical systems. Two examples of such limitations are
binding-time separation and support for partial derivatives.

The first half of the paper introduces the syntax of a core
analytical modeling language. Basic and fairly self-evident
features of an analytical modeling language include equa-
tions, point-free (or implicit time) notation, as well as time
derivatives (Section 2). More sophisticated – and in some
cases less-self evident – features needed to model even ba-
sic mechanical systems include partial derivates, families of
equations, aggregates (such as sequences and matrices), and
recursion (Section 3). The need for each of these features



(* pendulum-with-controller.acumen *)

discrete efrp (* A simple E-FRP controller *)

reads theta;

writes F;

observes event clock rate t = 0.1;

begin

last = init 0 in { clock => theta later};

F = init 0 in

{ clock =>

if abs(theta) < pi/100 then 0

else if theta > last then -1.0

else 1.0 };

end

continuous (* Pendulum physics *)

m = 5.0; g = 9.81; l = 3;

I = m * l^2;

F*l*cos(theta) - m*g*l*sin(theta) = I*theta’’;

boundary conditions

theta with theta(0)= 0.1, theta’(0) = 0;

Figure 1: Acumen Model of a Controlled Pendulum

as well as the complexities that some of them introduce are
explained.

The second half of the paper shows how the language de-
fined in the first half is mapped to executable code (Sec-
tion 4). Our study reveals that it is possible to provide
a practical mapping for a highly expressive language using
only 1) a light-weight analysis to partially direct equations,
2) a binding-time analysis, and 3) symbolic differentiation.
By implementing this mapping, we are able to accurately
explain why current symbolic algebra tools are not ideally
suited to assist in building simulation codes for novel robotic
systems (Section 5). In particular, we find the naive imple-
mentations of symbolic differentiation in mainstream sym-
bolic algebra tools such as Mathematica and Maple to be a
significant performance bottleneck for mapping larger ana-
lytical models to executable codes.

2. A SIMPLE MODEL
As noted in the introduction, the motivation for this work

stems from interest in CPS systems. Therefore, while our
focus is primarily on analytical models for continuous sys-
tems, it is important also to explain how such models are
integrated with models for the digital components. To this
end, this section uses a simple example to illustrate how both
discrete and continuous models are integrated, as well as the
basics of analytical modeling of continuous systems. To help
ground these concepts, we will also explain how our imple-
mentation (called Acumen) supports both types of modeling
and their integration.

2.1 Discrete Modeling Language
Components described in Acumen are assumed to exist

in a time-varying universe, where there is a global notion
of real-valued time. Within this universe, both discrete and

continuous components can be defined.
Figure 1 presents the Acumen ASCII source code for a

discrete controller attached to a continuous model of the
simple pendulum shown in Figure 2. The discrete sec-
tion in Figure 1 introduces an event-driven component. The
qualifier efrp specifies that what follows is a description
of a controller described in the E-FRP formalism [20, 30].

Figure 2: Pendulum

The key features of E-FRP
are providing support for
specifying event-driven re-
active systems, interfaces
across which values are read
from or written to the en-
vironment, and periodic or
observation-driven events.
Acumen and its semantics
are not tied to this par-
ticular formalism. Rather,
any formalism that can sat-
isfy the synchrony hypoth-
esis can be used for specify-
ing discrete computations.

The controller described in the figure reads the quantized
value of theta, and upon completing its computation, writes
a quantized value to F and last. Outside the component
these variables have continuous values, but they can only
be read and written to in a quantized form. Within a dis-
crete component, by default, quantized values are assumed
to be represented as standard floating-point numbers. The
observes clause defines the event clock that is automati-
cally generated at a constant rate of 0.1 time steps. This
event will be used to trigger activations of this agent. The
rest of the section specifies the values written for F and last

as two event-driven equations. The equations in this exam-
ple are simple because only one event (clock) is used as a
possible trigger. In general, any number of events can be
used. The first equation declares last to be initially 0, and
then to carry the value of theta from then onwards. The an-
notation later means that the other equation always reads
the old value of last when it is triggered. This way, last
is used to always carry the last value of theta. The next
equation defines a simple discrete controller that applies a
lateral force of 1 on the pendulum in a direction opposing
motion. A threshold of pi/100 degrees is used to inhibit any
force to the pendulum when it is almost vertical.

2.2 Continuous Modeling Language
The continuous section in Figure 1 describes the con-

tinuous environment through as a series of equalities that
constrain a set of real-valued, time-varying variables, and
where the notion of time itself is real-valued. In this exam-
ple, our physical environment is a simple pendulum, and the
description simply introduces some constants and the rota-
tional analog of Newton’s second law of motion (

P
f = ma)

for a pendulum. Acumen’s equations are not directed. This
means that writing the equation as a = F/m would have
been equivalent. Thus, the constraints are relational or
acausal. Equations can refer to derivatives of variables. For
example, theta’’ refers to the second derivative of the vari-
able theta. Finally, the boundary conditions subsection
allows us to provide the information necessary to solve the
system of equations.



2.3 Other Features of the Implementation
In addition to allowing the user to describe both con-

tinuous and discrete components, Acumen also provides a
module system that allows components to be packaged in
a reusable fashion. Module instantiation is a fairly straight
forward process, and is orthogonal to the issues addressed
in this paper.

Acumen supports two methods for executing models. For
purely discrete (E-FRP) components, Acumen provides sup-
port for real-time execution [20, 30]. For hybrid models,
Acumen supports discretized simulation of the whole sys-
tem by compiling the continuous models using the methods
that we present in the rest of this paper. For this method of
execution, the user declares simulation parameters as part
of the source program in a simulation section. The user
can specify what values to observe during a simulation and
how they should be printed in a discrete log section.

Acumen uses an ASCII-based syntax designed to be as
close as possible to mathematical notation. However, be-
cause it is often more convenient to read the code type set
in the same way that mathematical formulae appear in sci-
entific publications and texts, Acumen also provides a pretty
printer that provides this functionality. This pretty printer
produces a LATEX file typesetting the model after each in-
vocation of the Acumen compiler. The generated LATEX file
contains a type set version of the source program as well
as the intermediate forms that arise during the compilation
process. Several examples of the output of this pretty printer
will be presented in this paper. Only minor manual modifi-
cations were needed to adapt these outputs to fit the needs
of the exposition.

3. MORE SOPHISTICATED MODELS
Mechanical engineers and researchers working on novel

cyber-physical systems use a wide range of analytical mod-
eling methods [1]. The most basic method for modeling
mechanical systems is to write a set of equations based on
Newton’s laws of motion. A somewhat more sophisticated
method, often considered more elegant and more systematic,
is to write the so called Lagrange equations. Because this
approach is centered around formalizing kinetic and poten-
tial energies, it can also have the advantage of being useful
for specifying and verifying stability properties of a given
system. Yet another method can be used once the Lagrange
equations have been attained, which is to write the so called
Hamilton’s equations. For a variety of technical reasons,
researchers working on novel robotic systems tend to make
extensive use of both Lagrangian and Hamiltonian methods.

As noted earlier, in current practice, going from an analyt-
ical model for a novel mechanical system to simulation code
is generally done by hand. The process typically includes
steps such as:

• Mapping generic problem solving techniques like La-
grangian or Hamiltonian modeling to specific instances

• Eliminating partial derivatives, often using symbolic
differentiation

• Algebraic manipulation to solve for unknown variables,
including Gaussian elimination

• Discretization

There are steps that engineering students learn as part of
their training, and are generally able to perform quite skill-
fully for small, model problems. But for virtually any real-
istic problem, the size of the systems involved makes these
steps tedious and error prone. These difficulties are particu-
larly problematic when the system being developed is novel.
In such situations, the structure of the system is constantly
changing and the expected behavior is not yet well under-
stood.

Acumen’s continuous modeling language is designed to ad-
dress this need, and has been developed as a collaboration
between computer scientists and scientists actively develop-
ing novel cyber-physical systems. In the rest of this section
we introduce the key mathematical concepts supported by
Acumen and illustrate their role in modeling mechanical sys-
tems.

3.1 Partial Derivatives
The three basic methods for modeling mechanical systems

described above can be illustrated by using them to model
a simple pendulum. Figure 3(a) presents the automatically
pretty-printed version of the Acumen code we presented in
the previous section. As noted earlier, the main equation in
this model simply uses Newton’s second law of motion.

Figure 3(b) presents a model that uses Lagrange’s equa-
tion. When using this method, one specifies the kinetic en-
ergy T and the potential energy V in the system. Then, the
Lagrangian L is always taken to be L = T−V . For a system
that has only one state variable such as θ in this system, the
Lagrange equation is simply the final equation in that dis-
play. Shortly, a more sophisticated example will illustrate
what is done when there are multiple state variables, and
how Acumen supports modeling such systems. Neverthe-
less, this simple example is sufficient to illustrate the utility
of partial derivatives (such as ∂L/∂θ̇ in this example) in
applying systematic methods such as Lagrangian modeling.
Figure 3(c) similarly illustrates the need for partial deriva-
tives to model systems using Hamilton’s equations.

3.2 Families of Equations
Once the system being described has more than one state

variable, modeling using Lagrange or Hamilton equations
employs families of equations, which are written as one equa-
tion but really represent a collection of different equations
derived by instantiating certain indices and performing some
affine (or “small”) computations. For example, Figure 3(d)

Figure 4: A Pendulum-
Spring-Mass system

provides a model for the
system shown in Figure 4.
It consists of a pendu-
lum hanging from a mass,
and where the mass is at-
tached via a spring to a
wall. Because this exam-
ple has two degrees of free-
dom, x and θ, the example
introduces a tuple of state
variables q. The equa-
tions covering the dynam-
ics of the system are then
expressed by the family
of equations that appears
at the end of the exam-
ples. In Figure 3(d), the



m = 5 g = 9.81 ` = 3 I = m`2

F` cos (θ)−mg` sin (θ) = Iθ̈

(a) Newtonian Formulation of a Pendulum

m = 5 g = 9.81 ` = 3 I = m`2

T =
1

2
Iθ̇2 V = mg` (1− cos (θ))

L = T − V
d

dt

„
∂L

∂θ̇

«
− ∂L

∂θ
= 0

(b) Lagrangian Formulation of a Pendulum

m = 5 g =
981

100
` = 3

H =
p2

2`m
− g`m cos(θ) θ̇ =

∂H

∂p
ṗ = −∂H

∂θ

(c) Hamiltonian Formulation of a Pendulum

q = [x , θ] a = 1 m = 2 M = 5

g =
49

5
k = 2 I =

4

3
ma2

T =
1

2
(M + m) ẋ2 + maẋ θ̇ cos (θ) +

2

3
ma2θ̇2

V =
1

2
kx2 + mga (1− cos (θ)) L = T −V

∀i ∈ dim (q)
d

dt

„
∂L

∂q̇i

«
− ∂L

∂qi
= 0

(d) Pendulum/Mass

q = [θns , θs ] d =

»
θ̇ns

θ̇s

–
m = 1 a = 2

b = 3 ` = a + b mH = 10 g = 9.81

M =

»
mb2 −m`b cos (θs − θns)

−m`b cos (θs − θns) (mH + m) `2 + ma2

–
T =

1

2

“
dTMd

”
(0,0)

V = mH g` cos (θs) + mga cos (θs)

+ mg (` cos (θs)− b cos (θns)) L = T −V . . .

(e) 2D Bipedal Robot

P (`, m)=

8>><>>:
1 if ` = m and ` = 0
(1− 2m) P (m− 1, m− 1) if ` = m
(1 + 2m) z P (m, m) if ` = m + 1
(2`−1)z P(`−1,m)−(`+m−1) P(`−2,m)

`−m
otherwise

S (m) =

(
0 if m = 0

x C (m− 1)− y S (m− 1) otherwise

C (m) =

(
1 if m = 0

x S (m− 1)− y C (m− 1) otherwise

fact (n) =

(
1 if n = 0

n fact (n− 1) otherwise

N (`, m) =

8<:(2` + 1/4π)1/2 if m = 0“
(2` + 1/2π) fact(`−m)

fact(`+m)

”1/2

otherwise

Y (`, m) =

(
N(`,−m) P (`,−m) S (−m) if m < 0

N (`, m) P (`, m)C (m) otherwise

m = 5 V = Y (3, 2) q = [x, y, z]

T =

„
1

2

«
m
`
ẋ2 + ẏ2 + ż2´ L = T − V . . .

(f) Particle in a Field Defined by Spherical Harmonics

Figure 3: Automatically Typeset Examples of Continuous Systems Described in Acumen

∀ quantifier is used to in-
troduce the index variable for a family of equations. Such
quantifiers can be nested as needed. In the ASCII-based
syntax, the keyword foreach represents this quantifier. The
intent is to express as concisely and as naturally as possibly
what would typically be expressed in a mechanics textbook
or research paper as:

d

dt

„
∂L

∂q̇i

«
− ∂L

∂qi
= 0 where

q = (x, θ)
i ∈ {1, 2}

For someone not familiar with this notation its exact inter-
pretation can be hard to discern. In particular, if it is read
compositionally, one must interpret the negated term as the
derivative of L with respect to the real-number value of the
ith element of the tuple q. Strictly speaking, there may
well be a mathematically valid compositional interpretation
for this notation along those lines. What is generally meant,
however, is a more syntactic interpretation that is more akin
to macro-expansion than to a compositional interpretation.

In particular, what is meant is that the name contained in
the ith element of the tuple is looked up. In other words,
this family of equation literally represents the following two
equations:

d

dt

„
∂L

∂ẋ

«
− ∂L

∂x
= 0 and

d

dt

„
∂L

∂θ̇

«
− ∂L

∂θ
= 0

It is useful to note here that mechanical engineers do not
seem to write such expressions when a complex computation
is needed to look up the name. Rather, computations of
this form are usually fairly simple, and one can expect that
a simple analysis can be used to ensure that these types of
computations are well-formed. In fact, one can argue that
it would be ill-advised to use a general purpose algebraic
solver to perform such computations. In particular, if there
is a simple typographic error in such a formulation, a general
purpose engine can spend a lot of time trying to perform an
unnecessary computation.



3.3 Aggregates
Figure 5: Bi-Ped RobotNot surprisingly, once

we start modeling larger
systems, there is a need
for aggregate types. Acu-
men supports basic ag-
gregate types, namely,
tuples, vectors, and ma-
trices, as well as the
standard operations on
these constructs. Fig-
ure 3(e) shows how these
three notions arise nat-
urally in modeling the
simple compass-like bi-ped robot [16] shown in Figure 5.
In the ASCII-based syntax, tuples are written with regular
parentheses, and vectors and matrices with square brack-
ets. While the treatment of aggregates in Acumen is mostly
straightforward, their implication in descriptions of families
equations (for example, q in the example above is a tuple)
does require some care. We return to this point in Sec-
tion 4.2.

3.4 Recursive Functions and Conditionals
Auxiliary functions are often needed to specify non-trivial

mechanical systems. Furthermore, relatively sophisticated
machinery, such as recursion, is generally needed to define
such functions. Recursive functions are needed to write the
dynamic equations that result when a series of masses are
connected together with springs. While we can do this ex-
ample with Acumen’s built-in summation function, slightly
more sophisticated (but still very common structures) such
as robots with a tree-like topology (bipeds, humanoids, etc),
are more naturally modeled using recursive functions that
traverse the specification of the topology.

To showcase an example further a field from the rigid-
body mechanics domain that we have focused on so far,
and that requires several recursive auxiliary function defi-
nitions, Figure 3(f) presents a complete specification of a
spherical harmonics problem in Acumen. The example uses
Acumen’s support for recursive functions that return both
real and integer values, as well as the use of conditional ex-
pressions. Conditionals are needed, of course, to ensure that
the recursive definitions have base cases. In the ASCII-based
syntax, conditionals are written simply as if-then-else ex-
pressions.

4. EXECUTING AN ANALYTICAL MODEL
We now turn to the question of how such analytical models

can be turned into executable code. To address this ques-
tion in the most useful way, we chose to balance two goals.
On the one hand, we are interested in automating as much
as possible of the derivation and coding steps that engineers
carry out by hand. On the other hand, we want to ensure
that the tools that we and others develop for this purpose
comprise primarily a small number of transformations that
are fast, transparent, and predictable. In this section we ex-
plain three steps that are key to achieving this goal. These
steps are 1) a light-weight analysis called Defined Variable
Analysis that allows us to partially direct equations in the
source program, 2) a Binding-time Analysis (BTA) with an
associated specialization step, and 3) symbolic differentia-
tion.

(a)
Families of Partial Differential Alg. Eqs. (FPDAEs)

Static Computation (SC)

Defined Variable Analysis

��

(b)
Partially directed FPDAEs

Static Computation (SC)

Binding-time Analysis (BTA)

��

(c)
Partially directed FPDAEs

Explicitly staged static computation (ESSC)

Specialization

��
(d) Partial Differential Algebraic Equations (PDAEs)

Symbolic differentiation
��

(e) Implicit Differential Algebraic Equations (DAEs)

Any External Algebraic Solver (Outside Acumen)

��
(f) Explicit DAEs or ODEs

Any External Discretization Strategy (Outside Acumen)

��
(g) Difference Equations

Figure 6: Mapping Analytical Models to Code

In addition to explaining these three important steps, we
will also briefly describe two additional steps that are imple-
mented in Acumen but that are not technically novel. These
two steps are there only for practical and pedagogic reasons.
Figure 6 gives an overview of all of these transformations.
The transformation below the Implicit Differential Algebraic
Equations (DAEs) are strictly not necessary, because fairly
generic solvers exist for implicit DAEs.

4.1 Defined Variable Analysis
For the most part, most equation-solving is done outside

Acumen by standard tools. However, in order to support
expression families, partial derivatives, and recursive equa-
tions, a light-weight analysis is needed to determine how
information flows across some of these equalities. This anal-
ysis is called Defined Variable Analysis, and works as follows.
First, it is only a best-effort analysis, and does not attempt
to direct all equations. If it fails to discover the direction
of flow for a particular variable and it turns out that this
information is needed by the two ensuing steps, the problem
will be reported to the user.

An equation can be trivially directed if one side is a vari-
able and the other side is a known value. Known values in-
clude constants, time, variables provided by a discrete con-
troller or an external input, variables for which boundary
conditions are provided, and any expression defined by a
function applied to known values. Finally, a value is known
when it is an explicitly provided tuple or vector of known
size. The state variable q in our running example in Fig-
ure 7 is considered known because of this rule. An equation
can also be directed when it contains exactly one unknown
variable, and there is a series of simply algebraic transfor-



q = [x, θ] a = 1 m = 2 M = 5 g = 9.8 k = 2

I =
4

3
ma2 T =

1

2
(M + m)ẋ2 + maẋθ̇ cos(θ) +

2

3
ma2θ̇2

V =
1

2
kx2 + mga(1− cos(θ)) L = T − V

∀i ∈ dim(q)
d

dt

„
∂L

∂q̇i

«
− ∂L

∂qi
= 0

(a) Acumen Source for Pendulum/Mass Example

Defined: q := [x, θ] a := 1 . . . I :=
4

3
ma2 . . .

Computed: ∀i ∈ dim(q)
d

dt

„
∂L

∂q̇i

«
− ∂L

∂qi
= 0

(b) After Defined Variable Analysis

Defined: q := [ x , θ ] a := 1 . . . I :=
4

3
ma2 . . .

Computed: ∀i ∈ dim(q)
d

dt

 
∂L

∂ q̇i

!
− ∂L

∂ qi
= 0

(c) After Binding-Time Analysis (BTA)

Defined: I :=
8

3
. . .

Computed:
d

dt

„
∂L

∂ẋ

«
− ∂L

∂x
= 0

d

dt

„
∂L

∂θ̇

«
− ∂L

∂θ
= 0

(d) After Specialization

Defined: A := cos(θ) B := sin(θ)

Computed:

»
2Aθ̈ − 2Bθ̇2 + 7ẍ + 2x = 0

98
5

B + 2Aẍ + 8
3
θ̈ = 0

–
(e) After Symbolic Differentiation (Implicit DAEs)

A := cos(θ) B := sin(θ) θ̈ :=
4Ax− 4ABθ̇ − 686

5
B

56
3
− 4A2

ẍ :=
2

7
Bθ̇2 − 2

7
Aθ̈ − 2

7
x

(f) Example Explicit DAE form

A+ := cos(θ) B+ := sin(θ) x+ := x + ẋ∆t

ẋ+ := ẋ + ẍ∆t θ+ := θ + θ̇∆t θ̇+ := θ̇ + θ̈∆t

θ̈+ :=
4Ax− 4ABθ̇ − 686

5
B

56
3
− 4A2

ẍ+ :=
2

7
Bθ̇2 − 2

7
Aθ̈ − 2

7
x

(g) Example Difference Equation form

Figure 7: Compiling the Pendulum/Mass Example

mations on that equation that can produce a definition for
that variable in terms of the rest of the variables appearing
in the equation. Any equations that do not have an obvious
directionality are left as equations to be solved at the end of
the transformation process.

The output of this analysis for for the Pendulum/Mass ex-
ample is presented in Figure 7(b). Here, directed equalities
are marked by using := instead of =.

4.2 Binding Time Analysis (BTA)
After determining which equation can be easily directed,

we need to check that there is sufficient information to 1)
expand all expression families, 2) evaluate all recursive func-
tions, and 3) eliminate all partial derivatives. If any in-
formation is missing, an error is reported to the user. It
turns out that this check is essentially a binding-time anal-
ysis (BTA) [19]. BTA is the analysis performed in an offline
partial evaluation system to determine, given some early or
“static” inputs to a program, which of the program’s compu-
tation can be done at an early stage. Technically, Acumen’s
BTA is a hybrid between a standard BTA used in a partial
evaluator and a type checker for a two-level language [22].
In particular, whereas a standard BTA makes a best-effort
attempt to perform as much of a program’s computations as
early as possible, Acumen’s BTA needs to produce a user-
level error when certain goals are not met. Specifically, the
source-level model must provide enough information for the
three kinds of static computations listed above to be per-
formed during the process of deriving executable code. Oth-
erwise, the user needs to be notified that this information
is missing, so that they can fix the model. For example, in
a model that uses the Lagrange equation, if the user writes
∂L/∂qi, the BTA would produce an error if any information
is missing that prevents Acumen from determining what the
components of the state vector q are.

A successful BTA annotates the model with instructions
for performing certain parts of the computation early and
to keep other parts of the model computations for later pro-
cessing. This annotation process is sometimes called stag-
ing as it separates the model into two stages. The anno-
tated model for the pendulum/spring example is illustrated
by Figure 7(c). In this illustration, computations that will
remain for further processing are shaded in gray, whereas
computations that should be performed immediately in the
next transformation step appear with a white background.

The annotations on this example serve to illustrate a num-
ber of features of Acumen’s BTA. The value of a is marked
as available because it is a known value. The analysis does
a little bit more work to determine that the whole definition
for I is a known value. In particular, it uses the fact that
the values for both m and a are known in the source. An
even more interesting case is the value for q, where the tu-
ple constructor itself is marked known but its elements are
not. In the partial evaluation literature, this type of value is
referred to as a partially static data structure [6]. Acumen’s
BTA supports such values to allow us to lookup the names
of the individual state variables even though there values
might not be known. This is enabled by the fact that the
size of the tuple q as well as the names of its contents are
known in the model, even though the values of these vari-
ables are not known (and in fact we will need to solve for
the values of these variables during the simulation).

While the implementation details for performing BTA for



the three types of computations listed at the start of this
section are somewhat involved, there is an elegant semantic
explanation for these details, and which is reflected in the
underlying types. In particular, essentially all values be-
longing to the set of integers N or rationals Q are treated as
static, and essentially all values belonging to the set of reals
R are viewed as dynamic. As such, functions of type N → R
or even of type N × R → R have statically known inputs,
and are therefore amenable to specialization.

4.3 Specialization
As noted earlier, BTA is essentially a scheduling anal-

ysis. In the partial evaluation literature, the step which
performs the work that a BTA schedules is called special-
ization. Acumen’s specialization step has two non-standard
features. First, because we are dealing with mathematical
terms where functions do not have side effects, it is safe to
memoize all functions. Second, to avoid the possibility of
code duplication, all terms are named and the name is used
instead of the value.

The result of specializing our running example is presented
in Figure 7(d). Specialization is very similar to standard
program execution, where we are allowed to have variables
in place of some otherwise proper values. For example, the
instantiation of expression families is essentially a type of
iteration. Computing the value of I is simple rational arith-
metic. Replacing qi by x and θ is essentially just tuple (or
“array”) lookup. Note, however, that x is really still just an
unknown value during specialization, and will carry different
values as the actual simulation is being performed.

4.4 Symbolic Differentiation
Symbolic differentiation plays an important role in map-

ping analytical models to executable simulation code. First,
it is needed to normalize applications of the differentiation
operator to terms that consist of anything other than vari-
ables. Second, for a large class of physical modeling prob-
lems, eliminating partial derivatives is an important step in
deriving executable code for solving the problem. In general,
a wide range of techniques may be needed to eliminate par-
tial derivatives, but symbolic differentiation generally plays
an important role. For models arising from rigid body me-
chanics problems, symbolic differential on terms available in
the model is in fact sufficient.

In the course of developing Acumen we were surprised to
find out that mainstream symbolic manipulation tools do
not seem to provide scalable support for symbolic differenti-
ation. In particular, mainstream systems seem to inline all
definitions before performing differentiation and not make
an effort to avoid generating terms containing duplicate sub-
expressions. This poses a serious scalability problem, be-
cause many models that can be compactly specified (such
as the spherical harmonics problem presented earlier) pro-
duce huge terms if they are fully inlined. This is particularly
surprising because more efficient implementation techniques
for performing symbolic differentiation, which are generally
refered to as automatic differentiation, have been known for
over 20 years (c.f. [17]).

To circumvent this problem in a clear and self-contained
manner, we implemented a specialized symbolic differentia-
tion procedure for Acumen, which computes derivatives of
mathematical definitions without fully inlining. We do not
view this as an innovation to automatic differentiation, but

rather, a simple way of showing how the performance of
naive symbolic differentiation can be significantly improved.
In programming languages terms, inlining is avoided by ex-
tending a basic symbolic differentiation algorithm to sup-
port local definitions (“let expressions”) and hash-consing
the construction of new expressions. The result of using
this strategy to eliminate the partial derivatives in our run-
ning example is presented in Figure 7(e). Note that the
variables A and B name two computations that would oth-
erwise each appear duplicated twice in the equations that
follow. Due to the behavior of the chain rule, this duplica-
tion behavior would get compounded as terms grow larger,
and can make symbolic differentiation prohibitively costly.
While significantly more sophisticated implementations of
symbolic differentiation exist (c.f. [17] for a recent account),
Section 5 shows that even the simple representational im-
provement used in Acumen leads to dramatic improvement
over the performance of symbolic differentiation in Mathe-
matica and Maple.

4.5 Algebraic Solving and Discretization
The algebraic solver used in Acumen is an extension of

the Defined Variable Analysis described above. The main
extension in this analysis is that it supports solving multiple
equations simultaneously, which is achieved using an analog
of Gaussian elimination. For our running example, the result
of this step is presented in Figure 7(f). The basic idea of this
type of “analytic solving” is to put the equations into a form
where there is always a variable on the left-hand side, and
all variables occurring on the right-hand side are somehow
considered “known”. We omit the details of this process
because it is standard, and elegant descriptions can be found
elsewhere (c.f. Chapter 7 in [8]). It is also important to
note that this is neither the only way nor the most general
way for solving DAEs. Nevertheless we include it in the
implementation of Acumen because it allows it to be a useful
tool without requiring the installation of stand-alone solvers,
and because it is useful to show that there is at least one
method for a non-trivial class of DAEs.

Even when differential equations have been put into a
“solved” or, more accurately explicit form, a final question
that must be answered is how we will step through these
equations using discrete, finite, steps in time. The choice of
this strategy is called discretization, and often corresponds
to mapping the differential equations into difference equa-
tions. While a wide range of techniques also exists for real-
izing this step, and a few are implemented in Acumen, we
only give one example of what such equations may look like.
The equations presented in Figure 7(g) are virtually identi-
cal syntactically to those from the previous phase. The two
main differences are 1) to distinguish the values after the
discrete time step with superscript of +, and 2) to add ad-
ditional equations that explicitly perform the approximate
integration needed to compute lower-degree derivatives from
higher degree ones. To do the latter, of course, an explicit
time-step parameter ∆t is introduced.

5. SYMBOLIC DIFFERENTIATION
To evaluate the performance of Acumen’s differentiation

procedure, we compare it with symbolic differentiation in
Mathematica and Maple. Three benchmark models are used:
An inverse dynamics model, a spherical harmonics model,
and a trigonometric tree model. Timings are taken on a
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Figure 8: Differentiation in Acumen vs. Mathematica.



quad-core Pentium D 3.20 GHz with 3.9 GB RAM running
Red Hat Linux 4.1.2-44, Linux kernel 2.6.18-128.el5PAE com-
piled with GCC 4.1.2. Acumen is compiled with the native
code compiler of OCaml 3.11.1.

Figure 8 presents results that help compare and relate
the performance of Acumen with Mathematica. Figure 8(a)
shows Mathematica’s differentiation time against the size of
the term being differentiation. Because log-scale is used for
the time dimension, and because the curves seem to con-
verge to an upward linear pattern, it appears that Math-
ematica’s differentiation time is exponential in term size.
Our hypothesis is that this is because Mathematica fully
inlines auxiliary definitions into the main program. As Fig-
ure 8(b) suggests, fully inlining auxiliary definitions leads
to exponentially larger terms, and Figure 8(c) suggests that
Mathematica’s differentiation time is roughly linear in the
size of fully inlined terms. Both these observations seem
to support our hypothesis. In contrast to Mathematica’s
performance, Figure 8(d) shows that Acumen’s procedure
produces derivatives that are polynomial in the input size
rather than exponential. This validates that Acumen’s pro-
cedure avoids unnecessary inlining. Figure 8(e) shows that
Acumen’s differentiation time appears to be polynomial in
the size of the output terms. Figure 8(f) shows that Acu-
men’s differentiation procedure is faster than Mathematica,
and that Acumen’s advantage seems to grow exponentially
with input size.

For Maple, the situation is similar to that with Mathe-
matica, with the exception of a more accentuated initial dip
in Acumen’s performance for some benchmarks. Maple does
provide an automatic differentiation routine that should be
much more efficient. However, at this time we have not de-
termined whether it can be used in all situations where the
symbolic differentiation algorithm can be used.

6. RELATED WORK
Our work is inspired in part by Functional Reactive Pro-

gramming (FRP) [10, 11, 18, 29] and by Functional Hybrid
Modeling (FHM) [23, 13, 14, 26, 15]. FRP introduced the
idea of combining continuous behaviors and discrete events
for modeling reactive systems, and FHM brings this idea
significantly closer to the natural way in which analytical
models seem to be written. For example, whereas FRP is a
causal modeling language, FHM is an acausal, higher-order
modeling language. Compared to FHM, Acumen is unique
in providing a clear binding time separation in the source
language, as well as in its support for partial derivatives.
However, FHM also supports features that Acumen does
not support, including structural dynamism, where the con-
nectivity of entities changes dynamically during simulation
time. At a more technical level, Acumen is a closed DSL,
in that it is not embedded in a host language. In contract,
FHM is so far primarily implemented as an embedded lan-
guage in Haskell. Embedding seems to greatly simply ex-
perimentation with different implementation strategies and
different possible interpretations of various language con-
structs. Closing the language helps us keep a clear distinc-
tion between syntax and semantics, and provides us with
fine-grained tools for controlling both as we work to under-
stand how domain experts write and reason about analytical
models.

Carette et al.’s observations about model manipulation [7]
greatly parallel ours, in that they recognize that the high-

est level formal artifact that relates to building simulation
codes is the mathematical model. However, the paper has
a different target audience than ours. In particular, the pa-
per promotes a strategy where the domain-expert is inti-
mately involved in specifying explicit transformation steps
that gradually take the model closer to the simulation code.
Our approach is aimed instead at one formalism for specify-
ing the model, and a fixed strategy for mapping this formal-
ism to executable code. As such, we view their exploration of
what can be done with automatic code generation as insight-
ful first steps towards what has been demonstrated by our
work. On the other hand, by allowing human intervention
in the transformation process, they can guide the transfor-
mation of a larger class of models to executable code. As
such, we foresee an elegant synergy between our approach
and theirs, where we approximate the set of models that can
be mapped automatically from the inside out (from smaller
sets to larger), and they explore its approximation from the
outside in.

7. CONCLUSIONS
In this paper we have shown how analytical models of

a particular class of physical systems, namely, mechanical
systems, can be automatically mapped to executable sim-
ulation codes. This mapping has the potential to signifi-
cantly reduce the cost and time needed to develop simula-
tion codes for novel cyber-physical systems. Our work sheds
light on the fact that there are still significant opportuni-
ties for improving tool support for the process of developing
novel cyber-physical systems.
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