Compass Gait Revisited: A Human Data Perspective with Extensions to Three Dimensions

Ryan W. Sinnet, Matthew J. Powell, Shu Jiang and Aaron D. Ames

Abstract—To better understand human walking, three bipedal robotic models—starting with the compass gait biped and increasing in complexity to a 3D kneed biped—are studied with controllers of human-inspired design; these controllers are derived from experimental data measuring the kinematics of human test subjects. The collected data are examined in an attempt to classify some of the most fundamental behaviors underlying human walking; it is found that a subset of functions on the kinematics of humans can be represented as a single class of functions. The control scheme uses feedback linearization to track the human output functions on a robot. A state-based parameterization for time is introduced to make these human functions time-invariant. Simulation results indicate the existence of locally exponentially stable periodic orbits for each model of interest; these orbits represent stable, steady-state walking gaits. The application of the human-inspired control approach results in “humanlike” walking as supported by agreement between the outputs of the robot models and humans.

I. INTRODUCTION

Essential to the advancement of anthropomorphic robotics is the development of control techniques which result in humanlike bipedal walking. Until recently, research in the field of robotic walking has focused on obtaining walking via mechanism design and strict control theory using passivity-based control [1], [2], control of zero-moment point [3], [4], hybrid zero dynamics [5], [6], [7], central pattern generators [8], [9], and compliance-based control [10], to name a few methods. The biomechanical component of robotic walking has been largely overlooked, though it is starting to be considered [11]. The authors’ previous work [12] takes this into consideration, developing a walking controller based on experimental human walking data. Simple functions are used to model fundamental kinematics behaviors associated with human walking; these functions are tracked through feedback linearization and ultimately lead to stable, humanlike walking on an anthropomorphic model in simulation. The goal of this paper is to understand this method in the context of well-studied bipedal models. Specifically, the compass gait biped [14], [15], [16], the 2D kneed biped [17], [18], and the 3D kneed biped [19] are studied. Simulations are given which show stable walking, and it is found that the results of these simulations match the human data remarkably well—an indication that the robotic walking achieved in these three models is indeed humanlike.

II. HYBRID SYSTEMS AND ROBOTIC MODELS

Hybrid systems are systems that display both continuous and discrete behavior and so bipedal walkers are naturally
modeled by systems of this form. This section, therefore, introduces the basic terminology of hybrid systems.

A. Formal Definition of Hybrid Systems

Hybrid systems or systems with impulse effects [20] have been studied extensively in a wide variety of contexts and have been used to model a wide range of bipedal robotic systems [21]. In this section, we introduce a definition of hybrid systems applicable to bipedal walking.

Definition 1: A hybrid control system is a tuple,
\[\mathcal{H} = (\mathcal{D}, U, S, \Delta, f, g), \]
where
- \(\mathcal{D} \) is the domain with \(\mathcal{D} \subseteq \mathcal{X} \) a smooth submanifold of the state space \(\mathcal{X} \subseteq \mathbb{R}^{2n} \),
- \(U \subseteq \mathbb{R}^{m} \) is the admissible control,
- \(S \subseteq \mathcal{D} \) is a proper subset of \(\mathcal{D} \) called the guard or switching surface,
- \(\Delta : S \rightarrow \mathcal{D} \) is a smooth map called the reset map,
- \((f, g)\) is a control system on \(\mathcal{D} \), i.e., \(\dot{x} = f(x) + g(x)u \).

A hybrid system is a hybrid control system with \(U = \emptyset \), e.g., any applicable feedback controllers have been applied, making the system closed-loop. In this case,
\[\mathcal{H} = (\mathcal{D}, S, \Delta, f), \]
where \(f \) is a dynamical system on \(\mathcal{D} \subseteq \mathcal{X} \), i.e., \(\dot{x} = f(x) \).

Hybrid Period Orbits and the Poincaré Map. In order to establish the stability of k-periodic orbits, we will use the standard technique of studying the corresponding Poincaré map. In particular, taking \(G \) to be the Poincaré section, one obtains the Poincaré map, \(P : G \rightarrow G \), which is a partial map defined by:
\[P(z) = c(\tau(z)). \]
where \(c(t) \) is the solution to \(\dot{x} = f(x) \) with \(c(0) = R(z) \) and \(\tau(z) \) is the time-to-impact function. In particular, if \(z^* \) is a \(k \)-fixed point of \(P \) (under suitable assumptions on \(z^*, \) \(G \), and the transversality of \(\partial \) and \(G \)) a \(k \)-periodic orbit \(\partial \) with \(z^* \in \partial \) is locally exponentially stable if and only if \(P^k \) is locally exponentially stable (as a discrete-time dynamical system, \(z_{i+1} = P(z_i) \)). Although it is not possible to explicitly compute the Poincaré map, one can compute a numerical approximation of this map by simulation and thereby test its stability numerically. This gives a concrete method for practically testing the stability of periodic orbits.

B. Constructing Hybrid Systems

We will now show how to construct a hybrid system for a biped given a Lagrangian and a discrete event (in this case, foot strike). We begin with the assumption that the stance foot is pinned to the ground and use this to describe the continuous dynamics. In order to derive the discrete dynamics, we must introduce additional Cartesian coordinates \(\psi, w_x, w_y, w_z \) at the stance foot with \(\psi \) a rotation about the \(z \)-axis. A more general discussion applicable to a wider range of bipeds can be found in [21].

Domain and Guard. The domain specifies the allowable configuration of the system. For the models considered in this paper, the non-stance foot must be above the ground. This condition is specified by a unilateral constraint, \(h \), which naturally leads to a definition for the domain:
\[\mathcal{D} = \{ (q, \dot{q}) \in T\mathcal{Q} : h(q) \geq 0 \}. \]
The guard is just the boundary of the domain with the additional assumption that the unilateral constraint is decreasing, i.e., the vector field is pointed outside of the domain, or
\[S = \{ (q, \dot{q}) \in T\mathcal{Q} : h(q) = 0 \text{ and } \frac{\partial h(q)}{\partial q} \dot{q} < 0 \}. \]

Continuous Dynamics. The Lagrangian of a bipedal robot, \(L : T\mathcal{Q} \rightarrow \mathbb{R} \), can be stated in terms of the kinetic energy, \(K : T\mathcal{Q} \rightarrow \mathbb{R} \), and the potential energy, \(V : \mathcal{Q} \rightarrow \mathbb{R} \), as \(L(q, \dot{q}) = K(q, \dot{q}) - V(q) \). The Euler-Lagrange equation gives the dynamic model, which, for robotic systems (see [22]), is stated as:
\[D(q) \ddot{q} + H(q, \dot{q}) = B(q)u \]
with inertia map \(D(q) \) and torque distribution map \(B(q) \), and
\[H(q, \dot{q}) = C(q, \dot{q}) \dot{q} + G(q) \]
containing terms resulting from the Coriolis effect and gravity; \(C(q, \dot{q}) \) can be found using standard methods [22]. Manipulation of (3) leads to the control system \((f, g)\):
\[f(q, \dot{q}) = \begin{bmatrix} -D^{-1}(q)H(q, \dot{q}) \end{bmatrix}, \quad g(q) = \begin{bmatrix} 0 \\ D^{-1}(q)B(q) \end{bmatrix}. \]

Discrete Dynamics. In order to define the reset map, it is necessary to first augment the configuration space \(\mathcal{Q} \). Attach a frame \(R_e \) to the stance foot; then \(w \) represents the Cartesian position of \(R_e \) and \(\psi \in \mathcal{S} \subseteq SO(3) \) represents the orientation of \(R_e \) about the \(z \)-axis. The generalized coordinates are then written
\[q_e = (p_x, p_y, p_z, \psi, q) \in \mathcal{Q}_e = \mathbb{R}^3 \times S \times \mathcal{Q}. \]
Without loss of generality, we assume that the values of the extended coordinates are zero throughout the gait. Moreover, the configuration variable does not change through impact so these values will be zero right after impact. Therefore, we introduce the embedding \(\iota : \mathcal{Q} \rightarrow \mathcal{Q}_e \) defined by \((0, 0, 0, q) \rightarrow q_e \); this will allow us to write the generalized coordinates in terms of the shape coordinates.\(^1\)

The impact model [23] under consideration assumes that an impulsive force is applied at the non-stance foot upon impact. This motivates the use of the holonomic constraint
\[J(q)\dot{q} = \begin{bmatrix} v \\ \omega_z \end{bmatrix}, \]
\(^1SO(n)\) represents the special orthogonal group in \(n \) dimensions.
\(^2\)For a biped in two dimensions (in the \(xz \)-plane), it is only necessary to consider the additional coordinates \(p_x \) and \(p_z \).
Fig. 1: Configuration, and the mass and length distribution, for compass gait (CG), 2D kneed (K2), and 3D kneed (K3) models. Values for parameters are available online [26].

3D Kneed Biped (K3). The 3D kneed biped has knees and a hip with two degrees of freedom at each hip joint. Like K2, this model has five links; however, this model operates in three dimensions and thus requires additional coordinates. The physical parameters are shown in Fig. 1(e) and the configuration space Q_{K3} for K3 has coordinates $q_{K3} = (\phi_{sf}, \theta_{sf}, \theta_{sh}, \varphi_{sh}, \varphi_{sh}, \theta_{nsh}, \theta_{nsh}, \theta_{nsh})^T$.

Combining these coordinates with the configuration of the model as given in Fig. 1(c) results in Lagrangian $L_{K3}(q_{K3}, \dot{q}_{K3})$. Assuming full control authority, i.e., $U_{K3} = \mathbb{R}^5$, one obtains the appropriate control system (f_{K3}, g_{K3}) as is given by (4).

We can now express the hybrid control system for the model K2 as

$$H^C_{K2} = (D_{K2}, U_{K2}, S_{K2}, \Delta_{K2}, f_{K2}, g_{K2}).$$

2D Kneed Biped (K2). The 2D kneed biped has knees and a torso for a total of five links with physical parameters given in Fig. 1(e). The configuration space Q_{K2} has coordinates $q_{K2} = (\theta_{sf}, \theta_{sh}, \theta_{nsh}, \theta_{nsh})^T$.

Combining these coordinates with the configuration of the model as given in Fig. 1(b) results in Lagrangian $L_{K2}(q_{K2}, \dot{q}_{K2})$. We again assume full control authority, i.e., $U_{K2} = \mathbb{R}^5$, and obtain control system (f_{K2}, g_{K2}) as in (4).

Let $h_{K2}(q_{K2})$ be a unilateral constraint representing the height of the non-stance foot above the ground; this constraint naturally leads to domain D_{K2} and guard S_{K2} given by (1) and (2), respectively.

The reset map Δ_{K2} is given by (6) with relabeling map R_{K2} given by

$$\Delta(q, \dot{q}) = \begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} \pi \circ \iota(q) \\ \pi^* \circ P(\iota(q), \iota^*(\dot{q})) \end{bmatrix},$$

where ι^* is the pushforward of ι and π is the canonical projection associated with ι with pushforward π^*. The reset map (6) takes a point on the guard and maps it to the domain.

C. BIPEDAL MODELS

Three related point-foot bipedal models will be considered in this paper; these models are shown in Fig. 1. In order of increasing complexity, these models are: 2D compass-gait (CG) biped, 2D kneed biped (K2), 3D kneed biped (K3). We will now describe the construction of these models.

2D Compass Gait Biped (CG). The 2D compass gait biped consists of two links with physical parameters given in Fig. 1(d). For this model, the configuration space Q_{CG} has coordinates $q_{CG} = (\theta_{sf}, \theta_{sh})^T$.

Combining these coordinates with the configuration of the model as given in Fig. 1(a) results in Lagrangian $L_{CG}(q_{CG}, \dot{q}_{CG})$. Assuming full control authority, i.e., $U_{CG} = \mathbb{R}^2$, one obtains the appropriate control system (f_{CG}, g_{CG}) as is given by (4).

Let $h_{CG}(q_{CG})$ be a unilateral constraint representing the height of the non-stance foot above the ground. Using the methods of Sec. II leads to the domain D_{CG} and guard S_{CG} given by (1) and (2), respectively.

The reset map Δ_{CG} is given by (6); the corresponding relabeling map R_{CG} is given by

$$(\theta_{sf} + \theta_{sh}, -\theta_{sh}) \mapsto (\theta_{sf}, \theta_{sh}).$$

We can now express the hybrid control system for the model CG as

$$H^C_{CG} = (D_{CG}, U_{CG}, S_{CG}, \Delta_{CG}, f_{CG}, g_{CG}).$$
Let \(h_{K3}(q_{K3}) \) be a unilateral constraint representing the height of the non-stance foot above the ground; this constraint naturally leads to domain \(D_{K3} \) and guard \(S_{K3} \) given by (1) and (2), respectively.

Because \(K3 \) operates in three dimensions, the reset map is more complicated. The impact map \(P_{K3} : S_{K3} \to D_{K3} \) given by (5) is used with generalized coordinates as described in Sec. II. The additional complexity arises in the state relabeling procedure. The coordinates other than those at the foot are exchanged viz.

\[
(\theta_{nsk}, \theta_{nsh}, \varphi_{nsk}, \varphi_{nsh}, \theta_{sh}, \theta_{sk}) \mapsto (\theta_{sk}, \theta_{sh}, \varphi_{sh}, \varphi_{nsh}, \theta_{nsh}, \theta_{nsk}).
\]

The coordinates at the new stance foot, \(\varphi_{sf} \) and \(\theta_{nk} \), and their associated velocities are found via a nonlinear transformation as described in [27]. The reset map \(\Delta_{K3} \) is given by applying the state relabeling procedure just described to the impact map \(P_{K3}(q_{K3}, \dot{q}_{K3}) \).

We can now express the hybrid control system for the model \(K3 \) as

\[
\mathcal{H}C_{K3} = (D_{K3}, U_{K3}, S_{K3}, \Delta_{K3}, f_{K3}, g_{K3}). \tag{9}
\]

III. HUMAN-INSPIRED CONTROLLER DESIGN

In Sec. II, we introduced hybrid systems and showed how to construct hybrid models for the bipeds of interest in this paper. Our goal now is to develop control laws which result in stable humanlike walking when applied to the hybrid control systems \(\mathcal{H}C_{K1}, \mathcal{H}C_{K2}, \) and \(\mathcal{H}C_{K3} \). Motivated by our desire to mimic human walking in some capacity, we will draw inspiration from experimental human kinematics data. Specifically, we will design functions which mimic some of the fundamental behaviors of human walking and track these human functions using feedback linearization. Before going into detail on the function design process, a description of the experiment is appropriate.

A. Experimental Setup

The Phase Space System [28] comprises 12 high precision cameras positioned to allow for spatial measurements of a number of LED sensors to within an accuracy of one millimeter. For a given test subject, we fixed 19 LED sensors at strategic points on the subject and instructed the subject to walk straightly on flat ground. We collected the positions of the sensors at 480 Hz. We repeated the process 11 times for a given subject—three of the test runs represent normal walking while the other eight represent fast walking, slow walking, backward walking, etc. Overall, we measured the gait of nine subjects; the collected data are available online [29]. In this paper, we selected the subject whose data were the least noisy—we use these data for the controller design process specified presently.

B. Extracting Human Functions from Data

We now describe the process of designing human functions which characterize behaviors fundamental to human walking. From this point on, it is assumed that we are considering the data for a single test subject; specifically, we consider subject four for the rest of this paper.

Canonical Human Function.

Using the data for our chosen subject, we examine various output functions on the subject’s kinematics, i.e., we consider angles, slopes, and end-effector positions. The idea is to determine a set of behaviors which can be used to represent human walking. We found that the following functions (see Fig. 1(f)) describe fundamental behaviors intrinsic to human walking: sagittal leg slopes, knee angles, torso angle and hip velocity. In the coronal plane, we examined the angles of the hip and the angle between the stance leg and the ground.

One of the primary motivations behind this choice of functions is the trajectory each function follows over time. Each of behaviors mentioned qualitatively resembles a second-order system response and can thus be characterized with the following canonical human function:

\[
y^d(t) = e^{-a_7 t}(a_1 \cos(a_2 t + a_3) + a_4 \sin(a_2 t + a_3)) + a_6 t + a_7. \tag{10}
\]

Function Fitting.

We would like to apply the canonical human function (10) to our data to model the behaviors described. Formally, this means that we would like to find the parameters \(a_1, \ldots, a_7 \) for a given function which result in functions that fit the data closely as possible; in other words, for each function, we would like to solve the optimization problem

\[
\min_{\{a_i\}_{i=1}^{K}} \sum_{k=1}^{K} (y_d(\tau[k], a_1, \ldots, a_7) - x[k])^2, \tag{11}
\]

where \(\tau[k] \) and \(x[k] \) represent the time and human data, respectively, with \(k \in [1, \ldots, K] \subset \mathbb{Z} \) an index for the \(K \) data points, and \(y_d(\cdot) \) the fitting function with parameters

\(^4 \text{When deciding on a choice of functions, it is necessary to choose one function for each degree of actuation. Moreover, a good choice of functions is one in which there is an approximate one-to-one correspondance between actuators and functions. For example, we would not want to track both the angle and slope of the stance leg as one actuator would do most of the work in tracking these functions.} \)
with control gain ε for control system (f, g). Applying this control law yields

$$f_{cl}(q, \dot{q}) = f(q, \dot{q}) + g(q) u^{TB}(q, \dot{q}, t).$$

Time-Invariant Parameterization

Motivated by our desire to design autonomous or time-invariant controllers, we introduce a parameterization for time as is common in the literature [5], [7].

Denote the parameterization by $\varsigma : Q \rightarrow \mathbb{R}^{+}$ where \mathbb{R}^{+} represents forward time; we would like $\varsigma(t)$ to be approximately linear, i.e., $\varsigma(t) \approx \alpha t$ for some α. From Fig. 3, we see that $p_{\text{hip}}^{\text{hip}} \approx \dot{v}_{\text{hip}}^{x} t$ with \dot{v}_{hip}^{x} the average x velocity of the hip; this approximately linear relationship motivates the following parameterization:

$$\varsigma(t) := \frac{p_{\text{hip}}^{\text{hip}}(q) - p_{\text{hip}}^{\text{hip}}(q^-)}{\dot{v}_{\text{hip}}^{x}}. \quad (14)$$

We choose to track \dot{v}_{hip}^{x}, driving it to a constant. The value of this constant should be the parameter \dot{v}_{hip}^{x} from (14).

Autonomous (AT) Feedback Control

The parameterization (14) is a map from state to time and is applied to the desired human functions. Motivated by our desire to track the human functions and using (14), we define the following virtual output:

$$y(q, \dot{q}) = y^a(q, \dot{q}) - y^d(\varsigma(q))$$

with y^a the actual function on the kinematics of the robot and y^d the desired value from the human functions. Because of the use of hip velocity, we have a mixed relative degree system. Group the output functions as

$$y(q, \dot{q}) = (y^{1T}(q, \dot{q}), y^{2T}(q))^{T}, \quad (15)$$

where y_1 and y_2 represent the relative degree one and two outputs respectively. Similar to the time-based case, the

TABLE I: Optimized parameter values for human functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>Corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{gld}</td>
<td>0.126</td>
<td>0.479</td>
<td>0.249</td>
<td>0.395</td>
<td>0.249</td>
<td>0.249</td>
<td>0.249</td>
<td>0.999</td>
</tr>
<tr>
<td>m_{nsd}</td>
<td>0.786</td>
<td>0.786</td>
<td>0.786</td>
<td>0.786</td>
<td>0.786</td>
<td>0.786</td>
<td>0.786</td>
<td>0.999</td>
</tr>
</tbody>
</table>

TABLE II: Function choices for models of interest.

<table>
<thead>
<tr>
<th>Function</th>
<th>CG (1B)</th>
<th>CG (1A)</th>
<th>K2 (1B)</th>
<th>K2 (1A)</th>
<th>K3 (1B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{gld}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>m_{nsd}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>θ_{sh}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>θ_{nsd}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ϕ_{sh}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ϕ_{nsd}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ψ_{sh}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ψ_{nsd}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ψ_{sh}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ψ_{nsd}</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Fig. 4: Human data over the course of one step with one leg and the “canonical” functions that are fitted to this data. The specific variables that are plotted can be seen in Table I.

Fig. 5: Walking with TB (top)/AT (bottom) on model CG.

Fig. 6: Walking with TB (top)/AT (bottom) on model K2.

Fig. 7: Walking with TB on model K3.

Fig. 8: Eigenvalue magnitudes for all models.

IV. SIMULATION RESULTS

In this section, we describe simulations modeling the bipeds discussed. For models CG and K2, we simulate both TB and AT control, and for model K3 we simulate only TB. Through trial and error, we found that tracking the stance leg slope with TB control is the best choice; however, we achieve better results with AT control by replacing the stance leg slope with the velocity of the hip.

Hybrid System Construction. In order conduct a given simulation, we must construct a closed-loop hybrid system by applying some form of feedback control to a hybrid control system. We do this for each of the models: we apply (13) to (7), (8), (9) to obtain the hybrid systems \mathcal{H}_{CG}, \mathcal{H}_{K2}, \mathcal{H}_{K3}, respectively; we apply (16) to (7) and (8) to obtain $\mathcal{H}_{\text{AT} \text{CG}}$ and $\mathcal{H}_{\text{AT} \text{K2}}$, respectively. The control gains for the CG models are set to $\varepsilon = 15$ and the gains for the K2 and K3 models are set to $\varepsilon = 50$. The human functions used in the control laws (13) and (16) are given in Table II.

Stability Analysis. Fixed points were found for each model—the presence of a fixed point implies the existence of a periodic orbit. The eigenvalues (see Fig. 8) are all below unity implying that the respective periodic orbits are locally exponentially stable.

A. Compass Gait (CG) Simulation Results

The phase portraits for the TB and AT CG models are shown in Fig. 9(a); the behaviors agree with the human data. This trend is further confirmed in the plots of the virtual outputs, Figs. 9(b) and 9(c). It is important to note that, in order to achieve walking in the CG models, we had to shift the y-intercept of the m_{incl} output function from -0.119 to 0; this allowed the non-stance leg to clear the ground. This is the
only parameter we had to alter, and we used this parameter change in the K2 and K3 models to maintain consistency.

B. 2D Kneed Biped (K2) Simulation Results

The phase portraits for the TB and AT K2 models are shown in Figs. 9(d) and 9(e). Examination of these figures reveals that AT control and TB control result in slightly different behaviors. This discrepancy is even more pronounced in Figs. 9(f), 9(g), 9(h), 9(i). The difference in the behaviors of the two K2 models is a result of the parameterization of ς, time, ς is linear in time with respect to the human data, however, it becomes slightly nonlinear when used as a parameterization of time in the autonomous model. The nonlinearity in ς has a greater effect on the system as the complexity of the bipedal robotic model increases; thus, the discrepancy in behaviors is more apparent in the K2 models than in the CG models.

C. 3D Kneed Biped (K3) Simulation Results

The phase portraits for the TB model are shown in Figs. 9(j), 9(k), 9(l). The phase portraits show the inherent biperiodicity of 3D walking, as a set of two limit cycles for each angle, which is incurred by the “sway” of the hips in the lateral plane. We assume this swaying motion to be relatively insignificant to the overall walking, see [19]; as such, to obtain walking, we scale down the functions for the lateral angle constraints of the human. This scaling is shown in Fig. 9(o) along with the sagittal output constraints in Figs. 9(m) and 9(n). The slight discrepancy between the K3 and the human from tracking 2D angle projections.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we showed that kinematics outputs of human walking can be represented by a single mathematical function. This result allows us to construct walking controllers for bipedal robots without any knowledge of the human’s complex internal dynamics or control methods. The human functions are relatively “simple” yet, when implemented via feedback linearization control, yield locally exponentially stable, periodic orbit or in other words, stable walking gaits, which are remarkably humanlike in nature.

The methods presented seem to be easily extensible: in [30], the canonical human walking function is used to achieve stable walking in the simulation of a human with a transfemoral prosthesis. In [31], a method is presented for obtaining the parameters of the canonical functions in a manner which guarantees stable walking. Our current goal is to utilize these methods to achieve walking on our 10-DOF bipedal robot, AMBER. Videos can be found online [32].

REFERENCES

Fig. 9: Phase portraits and human function tracking.